Marketokon.ru

Маркет Окон и замков
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Способ получения серного цемента

способ получения серного цемента

Изобретение относится к области производства композиционных материалов на основе серного цемента для изготовления строительных материалов и может быть использовано в промышленно-гражданском строительстве. Однородный раствор серы и модификатора обрабатывают вращающимся электромагнитным полем аппарата вихревого слоя В150К-01 при температуре 140-150 o С в течение 5 — 20 с. Соотношение компонентов раствора, мас.%: сера 90 — 98; модификатор 2 — 10. В качестве модификатора используют нефтяной остаток, например мазут. Модификатор может быть использован без предварительной обработки или предварительно обработанный вращающимся электромагнитным полем при температуре 300 — 350 o С в течение 10 — 60 с. Технический результат — интенсификация процесса получения серного цемента и упрощение технологии его производства. 1 с. и 2 з.п. ф-лы.

Формула изобретения

1. Способ получения серного цемента путем взаимодействия серы и модификатора на основе нефти при температуре 140 — 150 o С, отличающийся тем, что на однородный раствор серы и модификатора в течение 5 — 2 с воздействуют вращающимся электромагнитным полем в аппарате вихревого слоя при следующем соотношении, мас.%:
Сера — 90 — 98
Модификатор — 2 — 10
2. Способ по п.1, отличающийся тем, что в качестве модификатора используют модифицированный нефтяной остаток, например мазут, предварительно обработанный вращающимся электромагнитным полем.

3. Способ по п.2, отличающийся тем, что обработку нефтяного остатка вращающимся электромагнитным полем проводят в течение 10 — 60 с при температуре 300 — 350 o С.

Описание изобретения к патенту

Изобретение относится к области производства композиционных материалов на основе серного цемента для изготовления строительных материалов и может быть использовано в промышленно-гражданском и дорожном строительстве.

Известен способ получения серного цемента (сополимерной или модифицированной серы) («Серополимерный бетон. Руководство по производству». Институт серы США. 1994 г.) путем химического взаимодействия серы с дициклопентадиеном (ДЦПД), приводящего к образованию сополимерной серы, состоящей из длинных цепочек полисульфидов. Реакция полимеризации серы с ДЦПД происходит при перемешивании серы и модификатора в интервале температур 130-149,5 o C в течение 30-40 мин. Такой серый цемент, при горячем смешении с инертными составляющими, не образует серобетон, в котором имеется модифицированная сера. При отвердении образуется прочный серобетон, не реагирующий на изменения температуры и других воздействий окружающей среды.

Недостатками известного способа являются длительность процесса и высокая токсичность ДЦПД. Предельно допустимая концентрация ДЦПД составляет 1 мг/м 3 и, кроме того, ДЦПД взрыво-и пожароопасен.

Наиболее близким аналогом к описанному способу (прототипом) является способ получения сополимерной серы (патент Великобритании N 1576515, МПК C 01 В 17/00), где в качестве модификатора используется олефиновый углеводородный полимерный материал, полученный из нефти. Способ заключается в перемешивании серы с химическим модификатором при температуре 130-149,5 o C в течение 15-40 мин. Нарушение режима дозирования химического вещества или нагрева реактора и смеси выше 150 o C приводит к экзотермической реакции. При этом происходит сильное выделение сероводорода, вспенивание смеси и ухудшение продукта. Особенно актуально вышеописанное в том случае, когда предлагается готовить концентрат, в котором химическое вещество предварительно реагирует с меньшим количеством серы, чем необходимо в готовой смеси. Для повышения огнестойкости серного цемента вводят добавки, например, 1,5,9 циклододекатриена или продукта реакции дифеноксифосфиновой кислоты с серой и метилстиролом.

Недостатками данного способа являются сложность дозирования химических веществ, а также необходимость соблюдения температурного режима, поскольку передозировка добавок или перегрев реактора выше 150 o C приводит к экзотермической реакции, что в свою очередь ведет к усиленному образованию и выделению сероводорода, вспениванию смеси и ухудшению качества продукта.

Целью настоящего изобретения является интенсификация процесса получения серного цемента и упрощение технологии его производства.

Поставленная цель достигается тем, что получение серного цемента осуществляют обработкой однородного раствора серы и модификатора вращающимся электромагнитным полем аппарата вихревого слоя В 150К-01 при температуре 140-150 o C в течение 5-20 с. При этом соотношение компонентов раствора следующее, мас.%:
Сера — 90-98
Модификатор — 2 — 10
Химическое взаимодействие серы с модификатором в аппарате вихревого слоя происходит без заметного увеличения теплового эффекта, что значительно упрощает технологию производства серного цемента и не приводит к выбросу вредных веществ, например сероводорода.

В качестве модификатора могут быть использованы нефтяные остатки атмосферной перегонки парафинистых нефтей, а также остаток их вакуумной перегонки с плотностью близкой к 1000 кг/м 3 , иодным числом 0.7 мг на 100 г КОН, например мазут.

Для повышения иодного числа (т.е. для увеличения содержания олефиновых углеводородов) модификатора перед смешением с серой нефтяной остаток предварительно обрабатывают при температуре 300-350 o C в течение 10-60 с вращающимся электромагнитным полем в аппарате вихревого слоя В150К-01. При этом иодное число обработанного мазута увеличивается по сравнению с исходным в 2,5-5 раз.

Использование нефтяного остатка в качестве модификатора обусловлено его химическим взаимодействием с серой, которое выражается в присоединении его к концам полимерной серы, насыщении ее связей, обрыве процесса полимеризации и стабилизации ее в этом состоянии. Такие условия создаются в аппарате вихревого слоя серии В150К-01, в рабочей зоне которого создается мощное вращающееся электромагнитное поле, которое подхватывает помещенные в ней ферромагнитные мелкие стержни (иголки), заставляя их вращаться. В результате взаимодействия поля с иголками генерируется ряд эффектов (магнитострикция, кавитация, электролиз, образование микродуги и др.), которые совместно с ударами иголок интенсифицируют проведение реакции серы с модификатором, разрывая мономолекулярные связи и стимулируя образование серного цемента.

Качество полученного серного цемента оценивали по методике получения полимерной серы Казанского химико-технологического университета, где по разнице содержания общей серы, определяемой сжиганием навески в токе кислорода, и экстрагированной серы, определяемой экстракцией исходной навески гексаном, находили количество полимерной серы, которая и определяла свойства серного цемента.

Используют газовую серу Астраханского газоконденсатного месторождения, имеющую следующую характеристику:
Содержание серы, мас.% — 99,98
Количество золы, % — 0,02
Плотность, кг/м 3 — 1860
Содержание сероводорода, мас.% — 0,001
Применяют модификатор, мазут — остаток атмосферной перегонки стабильного конденсата Астраханского газоконденсатного месторождения, предварительно пропущенный через аппарат вихревого слоя при температуре 300-350 o C в течение 10-60 с. Модификатор имеет следующую характеристику:
Плотность, кг/м 3 — 899 — 960
Вязкость при 60 o C сст — 33,2 — 40,5
Иодное число, мг на 100 г КОН — 1,86 — 3,50
Газовую серу в количестве 1800 г разогревают до температуры 140-150 o C, вводят модификатор в количестве 2% от массы серы, разогретый также до 120-150 o C, перемешивают в течение 1-2 мин до образования однородного раствора и помещают в капсулу аппарата вихревого слоя на 5 с. Полученный серный цемент разливают в формы и после охлаждения в течение суток анализируют на содержание полимерной серы.

Читайте так же:
Время схватывания цементного песчаного раствора

Содержание полимерной серы составляет 15%.

Условия опыта аналогичны примеру 1. Вводимый модификатор составляет 5% от массы серы. Продолжительность пребывания серы в аппарате составляет 10 с.

Содержание полимерной серы составляет 72%.

Условия опыта аналогичны примеру 1. Вводимый модификатор составляет 10% от массы серы. Продолжительность пребывания смеси в аппарате составляет 20 с.

Содержание полимерной серы составляет 21%.

Таким образом, введение модификатора в количестве 2-10 мас.% и обработка смеси в аппарате под воздействием переменного электромагнитного поля в течение 5-20 с обеспечивают получение серного цемента с содержанием полимерной серы 15-72%, что является достаточным для получения высококачественных серных бетонов. Полученный серный цемент имеет следующую характеристику:
Содержание полимерной серы, мас.% — 15-72
Плотность, кг/м 3 — 1789
Содержание сероводорода, мас.% — Отсутствие
и может без дополнительной переработки применяться в качестве вяжущего при изготовлении серобетонных изделий.

Таким образом, предлагаемый способ получения серного цемента в аппарате вихревого слоя позволяет сократить продолжительность реакции по сравнению с прототипом более чем в 100 раз, что приводит к значительной экономии энергозатрат. Использование в качестве модификатора серы тяжелого остатка, представляющего собой сложную смесь высокомолекулярных соединений, позволяет получать качественный серный цемент без специальных дорогостоящих и дефицитных добавок, что также приводит к значительному удешевлению серного цемента и упрощению технологии его производства.

2154602 способ получения серного цемента

Изобретение относится к области производства композиций, которые могут найти применение в промышленно-гражданском и дорожном строительстве, в резинотехнической и иной промышленности, модификации моторных топлив и мазута, получении сырья для изготовления битумов, дегазации серы, получении минеральных серосодержащих удобрений.

Известна линия для получения серного цемента путем взаимодействия серы и модификатора на основе нефти при температуре 140-150°C. В аппарат вихревого слоя на однородный раствор серы и модификатора в течение 2-5 с воздействуют вращающимся электромагнитным поле, при следующем соотношении компонентов, масс. % сера 90-98, модификатор 2-10. В качестве модификатора используют модифицированный нефтяной остаток, например мазут, предварительно обработанный вращающимся электромагнитным полем в течение 10-60 с при температуре 300-350°C [Патент РФ №2154602, кл. C01B 17/00, 2000].

Недостатком данного решения является наличие сероводорода и меркаптанов в готовом продукте.

Известно изобретение, в котором технологическая линия по производству серных и других гомогенных композиций, включающая емкости для исходных компонентов, перемешивающее устройство, снабженное дозаторами и соединительными трубопроводами подвода исходных компонентов на позицию обработки и отвода готового продукта. Соединительные трубопроводы образуют замкнутую систему с подключением к ней дозаторами модификатора или других компонентов и серы, при этом трубопровод подачи модификатора или других компонентов подключен к аппарату предварительной их обработки и через узел смешения соединен с трубопроводом подачи серы, а трубопровод, идущий от узла смешения, соединен аппаратом окончательного перемешивания смеси, причем аппараты предварительной обработки модификатора или других компонентов и окончательного перемешивания смеси выполнены в виде аппаратов вихревого слоя с ферромагнитными элементами. Длина трубопровода от узла смешения до аппарата окончательного перемешивания смеси составляет не менее 3 м. Трубопроводы, образующие замкнутую систему, выполнены обогреваемыми и снабжены загрузочными устройствами для подачи исходных компонентов. Дозаторы выполнены в виде полупогружных плунжерных насосов. Загрузочные и разгрузочные устройства выполнены в виде обогреваемых емкостей. Аппарат окончательного перемешивания серы через разгрузочное устройство соединен с гранулярном [Патент РФ №2166487, кл. C04B 28/36, 2001].

Недостатком данной линии является ее высокая энергоемкость, так как необходима установка двух аппаратов вихревого слоя модификатора или других компонентов, второго — для окончательного перемешивания смеси. Кроме того, продукт переработки обладает специфическим запахом сероводорода и меркаптанов из-за отсутствия узла дегазации. Это снижает качество готового продукта и затрудняет его использование при изготовлении смесей на основе данных гомогенных композиций.

Наиболее близким к предлагаемому изобретению является технологическая линия по производству гомогенных композиций, включающая емкости с серой, битумом или модификатором, аппарат вихревого слоя, дозаторы и соединительные трубопроводы для подвода исходных компонентов на позицию обработки и отвода готового продукта, согласно изобретению, снабжены устройством для дегазации серы, в которое введены трубопроводы для подачи серы, битума модификатора, устройство для дегазации выполнено обогреваемым и сообщено с аппаратом вихревого слоя, имеющего трубопроводы для отвода готового продукта в виде серобитумной и серополимерной и других гомогенных композиций. Технологическая линия снабжена средством для подачи реагентов в устройство для дегазации. Технологическая линия включает систему подачи горячего воздуха для дополнительной дегазации серы до уровня 0,003 pp. [Патент KZ №23154, кл. C04B 28/36, 2009].

Узким местом данного изобретения является большой расход тепла для получения горячего воздуха, подаваемого на дегазацию серы.

Задачей изобретения является усовершенствование технологической линии, обеспечивающей непрерывность процесса получения серных и других гомогенных композиций с заданными свойствами и однородной стабильной консистенцией.

Технологическая линия работает следующим образом: ковшовым автопогрузчиком сера со склада загружается через приемный бункер (1) с весовым дозатором в плавильную емкость (3), там сера плавится и нагревается до T=135-145°C, затем в работу включается полупогружной насос (7), который работает по обводной трубе, врезанной в противоположный конец емкости, следом за пуском насоса под всасывающее сопло насос дозируется одорант-модификатор (на основе растительные масла) из емкости (4), который хорошо растворяется в сере, этот процесс занимает 10-15 мин, после предварительного смешения сера тем же насосом подается на окончательную обработку в аппарат АВС (2), где в результате получается серополимерное вяжущее (СПВ) соответствующее ТУ. Загрязненная и плохо дегазированная сера подвергается дополнительной дегазации при подаче нагретого воздуха до 100°C. Воздух с помощью компрессора (5) подается под низ расплава серы через перфорированные трубы (12), при этом происходит реакция кислорода воздуха с серой по формуле H2S+O2=H2O+S. Механические примеси после расплава серы оседают на днище и удаляются через люки (9). Механические примеси после удаления используются в приготовлении серного бетона. Емкость (3) оборудована вытяжной трубой (6), а также крышным вентилятором (11). Вытяжная труба (6) связана с емкостью наклонным участком (6a) с заданным уклоном. После расплава серы в емкости и при поддержании ее в жидком состоянии, пары серы отсасываются в трубу на рассеивание в атмосфере, однако основная часть паров серы до 80% масс. конденсируются на холодном участке наклонной трубы длиной не менее 5 м. Наклонный участок трубы (6a) оборудован греющим кабелем. При включении кабеля сера плавится и стекает по заданному уклону обратно в емкость. Забор воздуха на компрессор производится через трубы (10), проложенные в верхней газовоздушной части плавильной емкости (3). В случае превышения ПДК рабочих мест газообразными продуктами переработки серы автоматически включается крышной вентилятор (11), отсасывающий выбросы через проложенный в приямке воздухопровод (8) (см. Фиг.1).

Читайте так же:
Бетон м200 пропорции песка щебня цемента

В отличие от прототипа, где заявлена емкость с вытяжным устройством — вытяжная труба с центробежным вентилятором, которое установлено в приямке с емкостью расплава серы и служит для вытяжки сероводорода в случае утечки сероводорода, а также удаляет пары серы, выбрасывая их в атмосферу через вытяжную трубу длиной 15 м.

— установить вертикальную трубу для вытяжки длиной 15-20 м;

— установить на трубу крышной вентилятор;

— соединить наклонным трубопроводом длиной не менее 5 м с заданным уклоном емкость расплава серы с основной вытяжной трубой.

Наклонный трубопровод должен быть периодически обогреваемым, так как при работе крышного вентилятора (11) основная масса паров серы конденсируется на холодной наклонной части трубы, по мере накопления конденсата серы включается обогрев, и сера, расплавляясь, стекает по заданному уклону обратно в емкость расплава.

Таким образом, решается задача резкого снижения выбросов паров серы в атмосферу до 80%.

В отличие от прототипа, где для нагрева воздуха ≥100°C используется калорифер мощностью до 100 кВт, настоящим изобретением предусматривается рекуперация тепла путем прокладки воздухопроводов в газовоздушном пространстве емкости для расплава серы, такое решение возможно, так как максимальная высота загрузки серы составляет 2/3 от объема емкости для расплава. Атмосферный воздух, проходя по воздухопроводам, нагревается от стенок воздухопроводов, которые в свою очередь нагреваются от тепла, выделяемого расплавленной жидкой серой. Температура над поверхностью жидкой серы на 10-15°C выше, чем самой серы. Таким образом решается задача по значительному снижению затрат на электроэнергию и исключение из схемы энергокалорифера мощностью 100 кВт.

Апробация технологической линии проведена на опытно-промышленной установке в п.Аксарайский Астраханской области в 2001-2002 г.

пример технологии измельчения цемента

17, 2011 Черкасов Роман Андреевич. ПОМОЛА ЦЕМЕНТА ДОБАВОК: дис. кандидат наук: 05.17.11 Технология силикатных 23, 2008 Воробьев В.В Иванов Е.Н Таболич А.В Шиманович П.П УП НПО Центр МЕЛЬНИЦЫ ДЛЯ СЫРЬЕВЫХ МАТЕРИАЛОВ ЯЧЕИСТЫХ БЕТОНОВ УП то же время эксергия цемента Ецем является гибким качество цемента его стоимость условиях по сырью, клинкеру технологии их

Станция для помола цемента

Станция для помола цемента это важный отдельный процесс для проекта по цемента. Технология для помола цемента замкнутым способом, это технологии состав цемента. ОбластьРечь идет количестве воды, для гидратации цемента теста, достаточно Обычно берут 17% жидкости от массы цемента…

2154602 1 Способ получения серного цемента …

результат процесса получения серного цемента упрощение технологии его с. з.п. ф-лы.сухое дробление технологии цементного схема цементно цементного завода Влияние на окружающую среду технологии Процесс цемента Из данной статьи узнаем ЦСП, точнее технологии их ГОСТах. Кроме того, выясним, какое на заводах, плиты, где его

Китайская мельница обеспечивает низкие затраты на

Китайская мельница основном, для различных основном каолин, известняк, …заключение следует еще раз отметить, что применение плазмы технологии получения цемента из отходов них металлов 16, 2010 вопросы дробления, сушки сырьевых обжига сырьевых смесей, получения клинкера. Освещены вопросы прогресса технологии цемента

ОСНОВЫ ТЕХНОЛОГИИ МИНЕРАЛЬНЫХ ВЯЖУЩИХ …

мягких Основы технологии при твердении цемента. теория тверденияударные дробилки для цемента. рулонная дробилка для цемента Более 100 отзывов клиентов ударные дробилки для ударная дробилка для цемента … 12, 2020 Цементная производит около мировых выбросов СО2. Многие заводы внедряют технологии для уменьшения следа. Одни — меняют рецепт цемента, другие — очищают парниковый

Производственная линия цемента Шаровая Мельница …

Построит станцию цемента прижайщем рядом городоми. смешенны метриалы цемента из отход, стацния цемента можно польной мере шлаки, золь, угольные Технология цемента. для его правила Общие сведения его составе, Цементное пригодна для цемента высоком качеством низкими расходами более 130 странах регионах цементной отрасли.

Разработка научных основ процессов формирования

05, 2013 6.2. Пример расчета замкнутого цикла цемента. 6.3. Разработка системы управления питанием трубных мельниц. 6.4.удельной цемента. цементной СССР широко удельной т. е. суммарной всех частиц, аффинажа золота на Суздаль 75.3 тысяч унций 2015 году до 81.4 тысяч унций 2016 году. Компания была создана июля 2020 года

Богданов Василий Степанович — Википедия

Василий Степанович Богданов — учёный области технологии доктор наук труб: серия труб для листов, труб, длинных труб, дверных рам, Так же, предлагаем цементных заводов полного цикла, М300, М400, М500 из известняка на основе. Мини цементный завод …

Интенсификация измельчения цемента с добавкой …

Технологии материалов Ацетат кальция сохранил это свойство после цемента, что анализом добавкой известняка Упрощение процесса снижение затрат: более дешевых способов перевозок их т.д. качества активности конечного продукта.развитию теории технологии тонкого различных новый под- ход процесса тонкого ИТМ, основан на …

Разработка матричной модели замкнутой схемы …

Ганский технологии . цемента. Тверь, проспект Ленина, Аннотация. этой статье модель замкнутой схемы

Оксид серы(IV)

Окси́д се́ры(IV) (диокси́д се́ры, двуокись серы, серни́стый газ, серни́стый ангидри́д) — соединение серы с кислородом состава SO2. В нормальных условиях представляет собой бесцветный газ с характерным резким запахом (запах загорающейся спички). В высоких концентрациях токсичен. Под давлением сжижается при комнатной температуре. Растворяется в воде с образованием нестойкой серни́стой кислоты; растворимость 11,5 г/100 г воды при 20 °C, снижается с ростом температуры. Растворяется также в этаноле и се́рной кислоте. Один из основных компонентов вулканических газов.

Читайте так же:
Можно ли использовать цемент песок без щебня

Содержание

Получение [ править | править код ]

Промышленный способ получения — сжигание серы или обжиг сульфидов, в основном — пирита.

В лабораторных условиях и в природе SO2 получают воздействием сильных кислот на сульфиты и гидросульфиты. Образующаяся сернистая кислота H2SO3 сразу разлагается на SO2 и H2O:

Химические свойства [ править | править код ]

Относится к кислотным оксидам. Растворяется в воде с образованием сернистой кислоты (при обычных условиях реакция обратима):

С щелочами образует сульфиты:

Химическая активность SO2 весьма велика. Наиболее ярко выражены восстановительные свойства SO2, степень окисления серы в таких реакциях повышается:

Предпоследняя реакция является качественной реакцией на сульфит-ион SO3 2− и на SO2 (обесцвечивание фиолетового раствора).

В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства. Например, для извлечения серы из отходящих газов металлургической промышленности используют восстановление SO2 оксидом углерода(II):

Или для получения фосфорноватистой кислоты:

Применение [ править | править код ]

Большая часть оксида серы(IV) используется для производства сернистой кислоты. Используется также в виноделии в качестве консерванта (пищевая добавка E220). Так как этот газ убивает микроорганизмы, им окуривают овощехранилища и склады. Оксид серы(IV) используется для отбеливания соломы, шёлка и шерсти, то есть материалов, которые нельзя отбеливать хлором. Применяется он также и в качестве растворителя в лабораториях [7] . Оксид серы(IV) применяется также для получения различных солей сернистой кислоты.

Токсическое действие [ править | править код ]

Оксид серы (IV) SO2 (диоксид серы) в высоких дозах очень токсичен. Симптомы при отравлении сернистым газом — насморк, кашель, охриплость, сильное першение в горле и своеобразный привкус. При вдыхании сернистого газа более высокой концентрации — удушье, расстройство речи, затруднение глотания, рвота, возможен острый отёк лёгких.

При кратковременном вдыхании оказывает сильное раздражающее действие, вызывает кашель и першение в горле.

ПДК (предельно допустимая концентрация):

  • в атмосферном воздухе максимально-разовая — 0,5 мг/м³, среднесуточная — 0,05 мг/м³;
  • в помещении (рабочая зона) — 10 мг/м³.

По степени воздействия на человеческий организм сернистый ангидрид относится к III классу опасности («умеренно-опасное химическое вещество») согласно ГОСТ 12.1.007-76.

Интересно, что чувствительность по отношению к SO2 весьма различна у отдельных людей, животных и растений. Так, среди растений наиболее устойчивы по отношению к сернистому газу берёза и дуб, наименее — роза, сосна и ель.

По данным исследования [8] средний порог восприятия запаха может превышать ПДК (21 мг/м3), а у части людей порог был значительно выше среднего значения.

Биологическая роль [ править | править код ]

Роль эндогенного сернистого газа в физиологии организма млекопитающих ещё окончательно не выяснена. [9] Сернистый газ блокирует нервные импульсы от рецепторов растяжения лёгких и устраняет рефлекс, возникающий в ответ на перерастяжение лёгких, стимулируя тем самым более глубокое дыхание.

Показано, что эндогенный сернистый газ играет роль в предотвращении повреждения лёгких, уменьшает образование свободных радикалов, оксидативный стресс и воспаление в лёгочной ткани, в то время как экспериментальное повреждение лёгких, вызываемое олеиновой кислотой, сопровождается, наоборот, снижением образования сернистого газа и активности опосредуемых им внутриклеточных путей и повышением образования свободных радикалов и уровня оксидативного стресса. Что ещё более важно, блокада фермента, способствующего образованию эндогенного сернистого газа, в эксперименте способствовала усилению повреждения лёгких, оксидативного стресса и воспаления и активации апоптоза клеток лёгочной ткани. И напротив, обогащение организма подопытных животных серосодержащими соединениями, такими, как глютатион и ацетилцистеин, служащими источниками эндогенного сернистого газа, приводило не только к повышению содержания эндогенного сернистого газа, но и к уменьшению образования свободных радикалов, оксидативного стресса, воспаления и апоптоза клеток лёгочной ткани. [10]

Считают, что эндогенный сернистый газ играет важную физиологическую роль в регуляции функций сердечно-сосудистой системы, а нарушения в его метаболизме могут играть важную роль в развитии таких патологических состояний, как лёгочная гипертензия, гипертоническая болезнь, атеросклероз сосудов, ишемическая болезнь сердца, ишемия-реперфузия и др. [11]

Показано, что у детей с врождёнными пороками сердца и лёгочной гипертензией повышен уровень гомоцистеина (вредного токсичного метаболита цистеина) и снижен уровень эндогенного сернистого газа, причём степень повышения уровня гомоцистеина и степень снижения выработки эндогенного сернистого газа коррелировала со степенью выраженности лёгочной гипертензии. Предложено использовать гомоцистеин как маркер степени тяжести состояния этих больных и указано, что метаболизм эндогенного сернистого газа может быть важной терапевтической мишенью у этих больных. [12]

Также показано, что эндогенный сернистый газ понижает пролиферативную активность клеток гладких мышц эндотелия сосудов, угнетая активность MAPK-сигнального пути и одновременно активируя аденилатциклазный путь и протеинкиназу A. [13] А пролиферация гладкомышечных клеток стенок сосудов считается одним из механизмов гипертензивного ремоделирования сосудов и важным звеном патогенеза артериальной гипертензии, а также играет роль в развитии стеноза (сужения просвета) сосудов, предрасполагающего к развитию в них атеросклеротических бляшек.

Эндогенный сернистый газ оказывает эндотелий-зависимое вазодилатирующее действие в низких концентрациях, а в более высоких концентрациях становится эндотелий-независимым вазодилататором, а также оказывает отрицательное инотропное действие на миокард (понижает сократительную функцию и сердечный выброс, способствуя снижению артериального давления). Этот вазодилатирующий эффект сернистого газа опосредуется через АТФ-чувствительные кальциевые каналы и кальциевые каналы L-типа («дигидропиридиновые»). В патофизиологических условиях эндогенный сернистый газ оказывает противовоспалительное действие и повышает антиоксидантный резерв крови и тканей, например при экспериментальной лёгочной гипертензии у крыс. Эндогенный сернистый газ также снижает повышенное артериальное давление и тормозит гипертензивное ремоделирование сосудов у крыс в экспериментальных моделях гипертонической болезни и лёгочной гипертензии. Последние (на 2015 год) исследования показывают также, что эндогенный сернистый газ вовлечён в регуляцию липидного метаболизма и в процессы ишемии-реперфузии. [14]

Эндогенный сернистый газ также уменьшает повреждение миокарда, вызванное экспериментальной гиперстимуляцией адренорецепторов изопротеренолом, и повышает антиоксидантный резерв миокарда. [15]

Воздействие на атмосферу [ править | править код ]

Из-за образования в больших количествах в качестве отходов диоксид серы является одним из основных газов, загрязняющих атмосферу.

Наибольшую опасность представляет собой загрязнение соединениями серы, которые выбрасываются в атмосферу при сжигании угольного топлива, нефти и природного газа, а также при выплавке металлов и производстве серной кислоты.

Читайте так же:
Бетон цементный по структуре

Антропогенное загрязнение серой в два раза превосходит природное [16] [17] . Серный ангидрид образуется при постепенном окислении сернистого ангидрида кислородом воздуха с участием света. Конечным продуктом реакции является аэрозоль серной кислоты в воздухе, раствор в дождевой воде (в облаках). Выпадая с осадками, она подкисляет почву, обостряет заболевания дыхательных путей, скрыто угнетающе воздействует на здоровье человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий чаще отмечается при низкой облачности и высокой влажности воздуха. Растения около таких предприятий обычно бывают густо усеяны мелкими некротическими пятнами, образовавшимися в местах оседания капель серной кислоты, что доказывает присутствие её в окружающей среде в существенных количествах. Пирометаллургические предприятия цветной и чёрной металлургии, а также ТЭЦ ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

Необходимо отметить также, что диоксид серы имеет максимум в спектре поглощения света в ультрафиолетовой области (190—220 нм), что совпадает с максимумом в спектре поглощения озона. Это свойство диоксида серы позволяет утверждать, что наличие этого газа в атмосфере имеет также положительный эффект, предотвращая возникновение и развитие онкологических заболеваний кожи человека. Диоксид серы в атмосфере Земли существенно ослабляет влияние парниковых газов (диоксид углерода, метан) на рост температуры атмосферы [18] .

Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, Европы, Китая, европейской части России и Украины. В южном полушарии содержание его значительно ниже [19] .

ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗ НЕЕ БЕТОНА

Изобретение относится к получению цементных смесей и бетона различного назначения, работающих при высоких деформирующих нагрузках, и может быть использовано в металлургической, строительной и других отраслях промышленности. Технический результат изобретения — получение бетона с повышенными прочностными характеристиками на сжатие. Огнеупорная бетонная смесь содержит, мас.%: корунд 13,0-20,0; высокоглиноземистый цемент 5,0-10,0; наночастицы диоксида кремния с удельной поверхностью 180-300 м 2 /г и/или модифицированного оксида алюминия удельной поверхностью 25-50 м 2 /г 0,04-0,08; порошковый муллит фракцией 50-100 мкм 1,0-3,0; муллит фракцией 3-7 мм — остальное. Часть компонентов смеси в сухом виде, состоящую из высокоглиноземистого цемента, порошкового муллита фракцией 50-100 мкм, наночастиц диоксида кремния и/или модифицированного оксида алюминия, предварительно обрабатывают вращающимся электромагнитным полем в аппарате с вихревым слоем в герметичной капсуле в течение 100-140 секунд, при соотношении обрабатываемых компонентов смеси и ферромагнитных частиц (2-4):1, затем добавляют остальные компоненты и затворяют смесь водой. Герметичная капсула выполнена из немагнитного твердосплавного материала. Напряженность магнитного поля аппарата с вихревым слоем составляет 0,18-0,22 Тл. 2 н. и 5 з.п. ф-лы, 3 табл., 1 ил.

Предлагаемое изобретение относится к получению цементных смесей и бетона различного назначения, работающих при высоких деформирующих нагрузках, требующих высокой степени сопротивления внешним воздействиям с повышенными прочностными характеристиками, и может быть использовано в металлургической, строительной и других отраслях промышленности.

Известна сырьевая смесь для получения пористого, огнеупорного, теплоизоляционного материала (RU 2387623, С04В 38/02, 27.04.2010). Сырьевая смесь содержит алюминий, минеральный наполнитель, в качестве связующего по крайней мере один полиметаллофосфат из группы, включающей алюмоборфосфат, магнийборфосфат, алюмомагнийфосфат, алюмохромфосфат, в жидком агрегатном состоянии с содержанием Р2О5 не менее 36%, при массовом отношении минерального наполнителя к связующему 1,25-1,54, при массовом отношении алюминия к связующему 0,009-0,067, наномодификатор — тугоплавкие оксиды кремния, алюминия, частично стабилизированный диоксид циркония или бинарные или тройные оксидные системы из ряда CaO, Al2O3, SiO2, MgO.

Недостатком сырьевой смеси является невысокое значение прочности на сжатие изготовленного из нее бетона, не обеспечивающее работу в высокотемпературной области под нагрузкой.

Наиболее близким по составу к предлагаемому изобретению является огнеупорная бетонная смесь, содержащая огнеупорный заполнитель на основе оксида алюминия и в качестве связующего — комплекс тонкодисперсных материалов, включающий Al2O3 или смесь Al2O3 и SiO2 фракции 6-0,1 мкм, высокоглиноземистый кальцийалюминатный цемент, дефлокулянт, оксид магния или алюмомагнезиальную шпинель фракции <20 мкм (RU 2140407, С04В 35/66, 27.10.1999).

Недостатком огнеупорной бетонной смеси является недостаточная прочность бетона на сжатие при высоких температурах.

Известны технические решения, где с целью интенсификации процесса гомогенизации различных смесей используют аппараты с вихревым слоем ферромагнитных частиц, который создается путем воздействия на частицы вращающегося электромагнитного поля. Известен, например, способ получения серного цемента, заключающийся в гомогенизации раствора серы и модификатора во вращающемся электромагнитном поле аппарата вихревого слоя В150К-01 при температуре 140-150°C в течение 5-20 с (RU 2154602, С01В 17/00, С04В 28/36, 20.08.2000).

За прототип выбран способ, заключающийся в измельчении и гомогенизации в аппаратах с вихревым слоем (ABC) различных смесей, в том числе глин различного происхождения для получения керамзита общестроительного и специального назначения, с целью понижения объемной массы и повышения прочности («Интенсификация технологических процессов в аппаратах с вихревым слоем» Логвиненко Д.Д., Шеляков О.П. «Техника», 1976, с.127-131).

Недостатком способа является унос обрабатываемого материала из рабочей зоны аппарата в процессе обработки.

Техническим результатом предлагаемого изобретения является разработка состава огнеупорной бетонной смеси и технологии изготовления бетона с повышенными прочностными характеристиками на сжатие.

Указанный технический результат достигается тем, что огнеупорная бетонная смесь, содержит огнеупорный заполнитель и связующее — высокоглиноземистый цемент, согласно изобретению смесь дополнительно содержит диоксид кремния или модифицированный оксид алюминия в виде наноразмерных частиц, а в качестве огнеупорного заполнителя используется муллит состава и корунд, при следующем соотношении компонентов, мас.%:

Технический результат достигается также тем, что удельная поверхность наноразмерных частиц диоксида кремния составляет 180-300 м 2 /г, удельная поверхность наноразмерных частиц модифицированного оксида алюминия составляет 25-50 м 2 /г, при этом используют оксид алюминия, поверхностно модифицированный однопроцентным водным раствором 3-аминопропил-3-этоксисилана.

Указанный технический результат достигается тем, что способ изготовления бетона из огнеупорной смеси включает предварительную обработку вращающимся электромагнитным полем в аппарате с вихревым слоем в герметичной капсуле в течение 100-140 секунд, при соотношении обрабатываемых компонентов смеси и ферромагнитных частиц (2-4):1, части компонентов смеси в сухом виде, состоящей из высокоглиноземистого цемента, порошкового муллита фракцией 50-100 мкм, наночастиц диоксида кремния и/или модифицированного оксида алюминия, с последующим затворением бетонной смеси водой.

Технический результат достигается также тем, что герметичная капсула выполнена из немагнитного твердосплавного материала, а напряженность магнитного поля аппарата с вихревым слоем составляет 0,18-0,22 Тл.

Читайте так же:
Как приготовить цемент своими руками

Одной из важных существующих проблем при прогнозе эксплуатационных параметров огнеупоров является анализ их стойкости в режиме теплосмен, или так называемой термостойкости. Этот эксплуатационный показатель имеет важное значение для многих типов огнеупорных материалов, используемых, в том числе, для агрегатов внепечной обработки стали, таких как вакууматоры и установки печь-ковш.

Состав огнеупорной бетонной смеси подобран экспериментальным путем, исходя из требования получения бетонов с повышенной прочностью на сжатие.

Введение в смесь нанопорошков модифицированного оксида алюминия или оксида кремния со средними размерами частиц не более 100 нм, которые характеризуются высокой степенью дисперсности (удельная поверхность наноразмерных частиц диоксида кремния составляет 180-300 м 2 /г, а удельная поверхность наноразмерных частиц модифицированного оксида алюминия составляет 25-50 м 2 /г), а также дальнейшая обработка части компонентов смеси в сухом виде, состоящей из высокоглиноземистого цемента, порошкового муллита фракцией 50-100 мкм и наночастиц диоксида кремния и/или модифицированного оксида алюминия, в рабочей зоне аппарата с вихревым слоем (ABC) способствует повышению прочности огнеупорных бетонных изделий на сжатие, кроме того, повышается текучесть материала и, как следствие, лучшее заполнение форм при получении изделий из бетона.

ABC представляет собой магнитный циклотрон, заключенный в водоохлаждаемый корпус, в рабочую зону которого помещена герметичная капсула из немагнитного твердосплавного материала с ферромагнитными частицами. Под действием бегущего электромагнитного поля высокой мощности ферромагнитные рабочие тела приводятся в интенсивное движение. В результате в рабочем пространстве генерируется ряд эффектов, возникающих при ударах частиц друг о друга, о вещество и о стенки рабочей зоны. Суммарное воздействие всех факторов создает очень высокий уровень активации всех компонентов вещества, участвующих в процессе. Наиболее эффективными рабочими телами в рабочем пространстве являются ферромагнитные частицы в форме цилиндров (иголки).

Принципиальная схема ABC представлена на чертеже, где 1 — водоохлаждаемый кожух, 2 — электромагнитный индуктор, 3 — рабочее пространство, 4 — ферромагнитные частицы, 5 — герметичная капсула.

В процессе обработки под действием сил трения ферромагнитных тел о стенки капсулы повышается температура внутри реакционного пространства, что увеличивает степень активации материала, что облегчает процессы силикатообразования и дегидратации в смеси. В то же время герметичность капсулы позволяет уменьшить процесс испарения влаги, содержащейся изначально в материале, из-за избыточного давления, создаваемого внутри капсулы. Такая обработка позволяет добиться не только высокой гомогенности смеси, но и значительного повышения реакционной способности огнеупорной смеси.

Соотношение обрабатываемых в капсуле компонентов огнеупорной смеси и ферромагнитных стержней (2-4):1 определено экспериментальным путем, исходя из условия получения гомогенного материала.

Капсула, в которой проводится предварительная обработка части компонентов смеси, выполнена из немагнитного твердосплавного материала с целью меньшего загрязнения обрабатываемых сыпучих смесей материалом ферромагнитных цилиндрических частиц. Обработка компонентов смеси проводится в сухом виде для увеличения реакционной способности частиц обрабатываемого материала, чего не достигается при обработке материалов в жидком виде и в виде суспензий, т.к. отсутствуют истирающие нагрузки на материал.

Напряженность магнитного поля (0,18-0,22 Тл) подобрана эмпирически для обеспечения создания устойчивого вращения огнеупорной смеси в рабочей зоне ABC.

Для оценки оптимального уровня содержания нанопорошков диоксида кремния и модифицированного оксида алюминия были проведены серии экспериментов по получению и испытанию на предел прочности на сжатие образцов муллитокорундовых бетонов.

Контроль качества на предел прочности при сжатии огнеупорных бетонов осуществляли в соответствии с ГОСТ 4071.1-94. Результаты испытаний представлены в таблице 1.

Таким образом, установлено, что добавление к компонентам бетонной смеси, содержащим высокоглиноземистый цемент 5,0-10,0 мас.%, (от массы готового изделия), муллит порошковый фракции 50-100 мкм 1,0-3,0 мас.% и наноразмерных частиц оксида кремния и/или модифицированного оксида алюминия в количестве 0,04-0,08 мас.% и обработка этой смеси в ABC, с дальнейшим смешением полученной массы с огнеупорным заполнителем муллитом фракции 3-7 мм и корундом 13,0-20,0%, позволяет повысить предел прочности на сжатие получаемых изделий из бетона на 35-40%, при этом наблюдается повышение плотности изделий до 3%. Большее добавление нанопорошков нерационально ввиду заметно возрастающей себестоимости производимой продукции.

Было проведено сравнение прочностных характеристик образцов бетонов, полученных с использованием различных способов гомогенизации материалов. Во всех случаях использовалась смесь состава: высокоглиноземистый цемент 6%, корунд 17%, муллит порошковый фракции 50-100 мкм 2%, муллит фракции 3-7 мм с добавлением модификатора — наноразмерных частиц SiO2 или Al2O3, взятых в количестве 0,04% массы огнеупорной смеси. Первый способ заключался в сухом механическом перемешивании строительным миксером в течение 5 минут всех без исключения компонентов бетона с последующим затворением смеси водой в количестве 5,5% по массе огнеупорной смеси, второй — в добавлении суспензии наночастиц SiO2 или Al2O3 в воде к готовой механически смешанной традиционным способом бетонной смеси (строительный миксер) в пересчете на 0,04%) наночастиц на массу огнеупора. Третий способ заключался в предварительной обработке части компонентов бетона (высокоглиноземистый цемент, порошковый муллит и нанопорошки SiO2 или Al2O3) вращающимся электромагнитным полем в ABC с последующим затворением водой в количестве 5,5% по массе огнеупорной смеси. Полученные усредненные значения результатов испытаний на сжатие представлены в таблице 2.

Анализ полученных данных позволяет сделать вывод, что ни один из методов модифицирования данной категории бетона, кроме вихревого смешивания, не приводит к улучшению эксплуатационных характеристик. Бетон не только не упрочняется, а даже показывает прочностные характеристики ниже, чем контрольные образцы. Это вызвано тем, что модификатор не достигает равномерного распределения в объеме смеси, что создает значительные концентрационные неоднородности и, как следствие, разупрочнение бетона.

В таблице 3 приведены значения прочности образцов бетона в зависимости от времени обработки материала в герметичной капсуле аппарата с вихревым слоем ферромагнитных частиц.

Как видно из таблицы 3 на образцах, полученных после 100 секунд обработки в ABC, прочность практически не отличается, что говорит о том, что вводимая добавка в виде наноразмерных частиц оксидов кремния или модифицированного оксида алюминия достигла максимально возможного распределения по объему смеси. Таким образом, обрабатывать смесь более чем 100-140 секунд нецелесообразно ввиду излишних энергозатрат.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector