Marketokon.ru

Маркет Окон и замков
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Опока для производства цемента

Опока для производства цемента

При производстве портландцемента сушке подвергают сырьевые материалы (при сухом способе), активные минеральные добавки и твердое топливо.
Необходимость сушки сырьевых материалов при сухом способе производства обусловливается тем, что на обжиг сырьевая смесь должна поступать с минимальной влажностью. Необходимость сушки активных минеральных добавок (трепела, опоки и др.), измельчаемых совместно с клинкером, определяется высокой влажностью добавок. Доменные гранулированные шлаки также имеют высокую влажность, так как их получают грануляцией огненножидкого шлама в специальных водных бассейнах. Содержащаяся в добавках влага начнет реагировать с клинкерной частью цемента и качество его в результате преждевременной гидратации резко ухудшится. Кроме того, тонкоизмельченный влажный материал налипает на мелющие тела, броневые плиты, замазывает междукамерные и разгрузочные перегородки мельницы, затрудняя или полностью прекращая в ней измельчение.
Допустимая влажность, при которой мельница работает нормально, зависит от свойств материалов. Она несколько ниже допустимой влажности материалов при подаче их в мельницу, установленной правилами технической эксплуатации цементных заводов.
В общем понятии сушка — это процесс удаления влаги из материала. Она может осуществляться испарением, механическим отделением воды, химическим связыванием ее и другими более сложными способами. В цементном производстве применяют сушку испарением.
Первым условием процесса сушки испарением является наличие разности между влажностью материала и окружающей среды. Влажность среды должна быть меньше влажности материала. Чем больше будет эта разность, тем выше окажется скорость испарения влаги.
Вокруг влажного материала образуется более насыщенный влагой газовый слой. Наличие этого слоя замедляет процесс перехода влаги в окружающую среду. Непрерывное удаление влажного газового слоя ускорит процесс сушки. С этой целью воздух или газ принудительно перемещают в сушильном аппарате, удаляя влажные порции его, а на смену им вводят новые порции сухого воздуха или газа.
Удаление влаги движущимся вокруг материала сушильным агентом происходит с поверхности. В результате влажность материала в слоях, близких к поверхности, оказывается ниже влажности внутренних слоев. В силу этой разности влага из внутренних слоев начинает перемещаться к наружным, стремясь выровнять содержание влаги по всему объему куска.
Скорость этого перехода зависит от разности в каждый момент между влажностью внутренних и наружных слоев. А последняя определяется, как отмечалось, разностью между влажностью на поверхности материала и влажностью среды.
Повышение темлературы материала существенно ускоряет процесс перемещения влаги. При этом улучшаются условия парообразования и влага в виде пара легко проникает через слой материала к его поверхности. С повышением температуры газа или воздуха возрастает степень предельного содержания в нем влаги. Так, при предельном насыщении воздуха влагой в 1 мг его при 0О|С может удерживаться 4,84 г влаги, при 20°С— 17,29 г, при 50° С — 82,94 г, а при 100° С —586,25 г.
Таким образом, основяыми параметрами сушильного процесса являются температура и влажность теплоносителя. Различают относительную влажность и абсолютную.
Воздух или газ может высушивать материал только в том случае, когда его относительная влажность менее 100%. Чем она меньше, тем быстрее будет проходить процесс сушки. Абсолютной влажностью называют количество влаги в виде пара в граммах, содержащейся в 1 м3 воздуха или газа.
Предельное насыщение воздуха, т. е. возможное количество водяного пара, содержащегося в 1 м3 воздуха, зависит от температуры и возрастает с ее повышением.
Таким образом, если нагревать воздух с какой-либо постоянной абсолютной влажностью, то относительная влажность его будет соответственно уменьшаться, так как в формуле относительной влажности уп постоянно, а ув увеличивается. Охлаждение воздуха будет вызывать обратное явление: относительная влажность его будет возрастать, так как предельно возможное содержание влаги в нем будет уменьшаться.
При какой-то низкой температуре этот воздух окажется насыщенным, т. е. содержание влаги в нем будет равно предельно возможному ее содержанию. Относительная влажность такого воздуха равна 100%.
При малейшем дальнейшем понижении температуры воздух уже не сможет удерживать в себе всю содержащуюся в нем влагу и часть ее выпадет в виде капель (росы, тумана). Температура, при которой воздух оказывается насыщенным, называется точкой росы.
Точка росы является очень важным показателем воздуха <или газа). При циркуляции его по технологическим аппаратам, имеющим разную температуру, воздух не должен охлаждаться ниже точки росы, иначе возможно выделение влаги на поверхности этих аппаратов (запотевание); на влажную поверхность налипает пыль и аппарат забивается. Развивается также при этом и коррозия (ржавление) стальных деталей аппарата.
О скорости сушки материала можно судить по количеству влаги, содержащейся в воздухе перед подачей его в сушильный аппарат и при выходе из него. Чем больше будет содержаться влаги в отработанном сушильном агенте, тем быстрее протекает процесс сушки, если количество материала, температура и влажность подаваемого при этом теплоносителя постоянны.
Большое значение имеет плотность и пористость материала. Куски пористого материала, например гранулированного шлака, высушиваются легче, чем глина.
Способность материалов к высушиванию лежит в основе расчета потребной мощности сушильных аппаратов.
При совмещении помола и сушки в одном агрегате — шаровой мельнице — сушку материалов производят в одну или две стадии в зависимости от исходной влажности материала. Если она не превышает 12%, применяют одностадийную сушку, совмещая ее с помолом, а при более высокой влажности материал вначале подсушивают в сушильном барабане (до 12%), а затем окончательно высушивают в мельнице.
Выбор типа сушильного аппарата, схемы сушки и ее режима (температуры) зависит от вида материала.

Читайте так же:
Декоративный кирпич цементный для внутренней отделки

Опока для производства цемента

Библиографическая ссылка на статью:
Тяпкин В.А., Калашников В.И., Ерофеева И.В. Получение термолита из опочного гравия и бетона на его основе (Часть 2) // Современные научные исследования и инновации. 2015. № 4. Ч. 2 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2015/04/51698 (дата обращения: 16.12.2021).

Легкие бетоны старого поколения включают: “цемент+песок+легкий заполнитель+вода”, а переходного поколения – с суперпластификаторами. Но суперпластификаторы плохо разжижают бетонную смесь из-за малого наличия цементно-водной суспензии. В бетонах нового поколения в соответствие с [1-5] для увеличения суспензионной составляющей к цементу добавляется значительное количество какой-либо молотой плотной породы [6- 10].

Для высокопрочных бетонов может быть использована комплексная добавка: микрокремнезем+обожженная молотая опока в соотношении 30:70 по массе. Для обычных бетонов-молотая опока. В первом случае затраты на микрокремнезем снижаются в 3 раза.

Исходя из гранулометрического состава опочно-кварцевой смеси выскажем свои соображения по использованию мелких и тонких фракций. Самая тонкая фракция менее 0,315 мм и тонкая фракция 0,315 – 0,63 мм – готовый тонкозернистый песок для растворов.

Наличие мелких частиц более легкой опоки уменьшает расслоение кладочных и штукатурных растворов. Тонкие частицы опоки являются реакционно-активной добавкой и связывают гидролизную известь в дополнительные цементирующие гидросиликаты кальция

Зернистая опока с фракцией 1,25 – 2,5 мм, как было сказано выше, должна обжигаться совместно с дробленой опокой.

Рис. 1. Номенклатура материалов из опоки

Таким образом, из намывной опоки по безотходной технологии может быть получено несколько материалов. Соотношение между различными фракциями зерен в опоке может варьироваться также как и количественный выход различных материалов.

Влажность намывного опочного гравия существенно варьирует. Намывная опока, отобранная из гидроциклона, имеет максимальную влажность, равную длительному водонасыщению, которое может достигать 30 – 35% по массе. Если опочный гравий будет отбираться из конуса под гидроциклоном и складироваться на отдельном складе, то влажность будет снижаться за счет естественного высыхания. Опочный гравий обладает высокой открытой пористостью и быстро высыхает на воздухе. В летний период влажность может снижаться до 5 –10%. При этом светлые разности гравия имеют большую влажность.

Читайте так же:
Определение прочности цемента при пропаривании

Для определения открытой пористости темные и светлые разности опоки испытывались на водопоглощение. Для этого опочный гравий фракции 20 – 40 мм высушивался до постоянного веса и подвергался естественному водопоглощению с периодическим взвешиванием через определенные промежутки времени. Результаты представлены в таблице 1.

Как следует из таблицы, уже через 10 мин. нахождения в воде светлая опока поглощает 18% воды, а через 3 суток водопоглощение достигает 30%. Темные разности опочного гравия имеют водопоглощение на всех временных этапах в 1,5 раза ниже.

Таблица 1. Водопоглощение опочного гравия

По результатам водопоглощения была определена средняя плотность в куске и пористость опоки. Для этого водонасыщенный гравий протирался тканью и погружался в мерный цилиндр с водой. По результатам вытесненного объема воды вычислялась средняя плотность.
Она находилась в пределах ρср=1450 – 1550 кг/м 3 . Пористость в абсолютно сухом состоянии составила 36 – 40%.

Прокаливанием абсолютно сухого опочного гравия при температуре 1000 о С определили потери при прокаливании (ППП). Они составили 2,0–2,5%. для светлых и темных разностей гравия. Органические примеси в опоке обычно отсутствуют. Поэтому при прокаливании удалялась химически связанная вода. При молекулярной массе SiО2, равной 60, доля воды составит 0,08 – 0,01 Н2О, т.е. можно с некоторым приближением принять вещество аморфного кремнезема, соответствующего формуле SiО2•0,1 Н2О.

Уменьшение сухой массы опочного гравия при обжиге не превышает 2 – 3%, т.е. с 1 т гравия получится 970 – 980 кг термолита. Расход сырья на 1т термолита составит 1,03 тонны.

Изучение свойств обожженного опочного гравия и легкого бетона на его основе и реакционно-активной добавки – высокодисперсного термолита

Опочный гравий фракции 10 – 40 мм обжигался с 20 о С до 1000 о С по режиму: подъем до t = 1000 о С – 0,5 часа; выдержка при температуре t = 1000 о С – 20 мин.; охлаждение до 20 о С – 0,4 часа. После обжига опочный гравий дробили на щековой дробилке, а затем рассеивали на 3 фракции: 10 – 20 мм, 5 –10 мм, и 0 – 5 мм. После дробления количество щебня из гравия фракции 5 – 20 мм оказалось 80%, а фракции 0 – 5 мм – 20 мм.

В связи с тем, что на кафедре не имеется лабораторной конусной и валковой дробилок для дробления лещадных пород, дробление осуществлялось на щековой дробилке. Щековая дробилка не пригодна для дробления лещадных пород, какой является лещадный опочный гравий. После дробления содержание лещадных зерен во фракции 10 – 20 мм составило 47%, а во фракции 5 – 10 мм – 41%.

Насыпная плотность смеси двух фракций 5 – 10 и 10 – 20 мм в соотношении 1:3 составляет 770 кг/м 3 , в уплотненном состоянии – 890 кг/м 3 ; средняя плотность обожженного опочного гравия в куске – 1472 кг/м 3 , а истинная – 2,5 г/см 3 .

Раздельный обжиг темной и светлой опоки не выявил различий в их окраске. Это свидетельствует о близком содержании оксидов железа, окисляемых при обжиге.

Изучено водопоглощение смеси обожженной светлой и темной опоки фракций 5 – 10 мм и 10 – 20 мм при соотношении 1:3.

Как следует из результатов, водопоглощение через 16 часов составляет 83% от четырех суточного. Это свидетельствует о значительном количестве сообщающихся капиллярных пор легко заполняемых водой. При полной пористости 41%, через 4 суток 65% всех пор насыщаются водой.

При приготовлении бетонной смеси на таком пористом щебне важно знать водопоглощение через первые 10-15 минут, т. к. щебень обезвоживает бетонную смесь и снижает ее пластичность. Поэтому содержание воды необходимо заведомо увеличивать. Водопоглощение опоки через 10-15 мин. зависит от размеров зерен. В смеси указанных фракций водопоглощение через 10-15 мин. находится в пределах 10-12% по массе, что составляет 43%-45% от 28-ми суточного водопоглощения.

Читайте так же:
Для снятия цементной стяжки

На обожженном термолите был изготовлен легкий конструктивный бетон. Бетон был изготовлен на Пензенском портландцементе «Азия-Цемент» ЦЕМ 42,5 Н. Использовался песок Сурский с Мкр=1,52, две фракции термолита фр. 5-10 мм – 211 кг/м 3 и фр. 10-20 мм – 492 кг/м 3 . В качестве пластификатора использовали СП Хидетал 9γГ. В/Т-отношение было 0,667, при котором бетонная смесь получилась малопластичной марки П-1 с осадкой конуса 3 см. Образцы-кубы 100х100х100 мм твердели в влажных условиях и испытывались через 2 и 28 суток (рис. 1). Получен легкий бетон М400 с классом по прочности В35 плотностью в абсолютно-сухом состоянии 1780 кг/м 3 .

Кроме легкого заполнителя термолита при его производстве от дробления опоки получается мелкая фракция 0-5 мм, которая после обжига должна измельчаться до высокой дисперсности более 10000 см 2 /г.

Минеральные компоненты для производства цемента

Сергей Лукошкин

Минеральные компоненты для производства цемента можно классифицировать следующим образом:

  • Инертные добавки-наполнители – не участвуют в процессе гидратации, вводятся для улучшения гранулометрического состава цемента, уплотнения его структуры (известняк)
  • Активные минеральные добавки – не обладают гидравлическими свойствами, но имеют пуццоланическую активность, т.е. взаимодействуют с гидроксидом кальция, который образуется в значительном количестве (15-20%) при гидратации основных клинкерных минералов, с образованием низкоосновных гидросиликатов кальция гелевидной структуры, которые уплотняют и упрочняют структуру цементного камня (трепел, опока, микрокремнезем, кислая зола-уноса)
  • Добавки со скрытыми гидравлическими свойствами – потенциально обладают вяжущими свойствами, но необходим активатор (щелочной или сульфатный), инициирующий процесс гидратации (доменный гранулированный шлак, основная зола-уноса)

img-state1.jpg

Химический состав минеральных компонентов определяет их свойства. Чем больше оксида кальция и меньше оксида кремния содержит минеральный компонент, тем выше его гидравлическая активность. И наоборот, чем меньше оксида кальция и больше оксида кремния содержит минеральный компонент, тем выше его пуццоланическая активность. Ниже представлена диаграмма, в основании которой находятся три основных оксида (кальция, кремния и алюминия), которые определяют свойства активного минерального компонента.

Кислая зола-уноса

Кислая зола уноса широко используется для производства цемента в мировой практике. Однако, есть определенные требования к химическому составу и физико-механическим характеристикам зол, которые определяют эффективность их использования в качестве минерального компонента при производстве цемента. В соответствии с требованиями ГОСТ 31108-2016 потери при прокаливании золы-уноса не должны превышать 5%, чтобы соблюдалось требование по равномерности изменения объема цемента. Активность золы определяет ее удельная поверхность. Для производства цемента целесообразно использовать золы с удельной поверхностью не ниже 3500 см2/г, в противном случае зола будет иметь низкую активность, что негативно скажется на качестве цемента. В таблице ниже представлены характеристики зол-уноса трех основных российских производителей– Черепецкой, Рязанской и Рефтинской ГРЭС.

img-state2.jpg

Производитель ППП SiO2 Al2O3 Fe2O3 MgO CaO Na2Oэкв R80 R45 Блейн
% % % % % % % % %см2/г
Черепецкая ГРЭС11,954,822,14,51,42,51,39,619,43783
Рязанская ГРЭС4,450,328,16,41,58,20,28.014,92524
Рефтинская ГРЭС2.257.425.94.90.75.60,810.024.43157

Результаты показывают, что зола Черепецкой ГРЭС имеет высокую удельную поверхность, но потери при прокаливании превышают допустимую границу 5%. Поэтому данную золу, в соответствии с требованиями ГОСТ 31108-2016, нельзя использовать при производстве цемента. Потери при прокаливании зол Рязанской и Рефтинской ГРЭС соответствуют требованиям ГОСТ 31108-2016, но они имеют низкую удельную поверхность, поэтому при производстве цемента их использовать нецелесообразно. Для того, чтобы устранить вышеуказанные недостатки, необходимо проводить сепарацию зол, однако это требует дополнительных затрат и в России этого не делают. Также повысить удельную поверхность зол можно путем их дополнительного помола, однако это приведет к значительному увеличению удельной поверхности цемента и его водопотребности, что негативно скажется на прочности и долговечности бетонных изделий. Подводя итог вышеизложенному, можно сделать вывод, что в России нет зол-уноса пригодных для производства цемента по причине нестабильного химического состава и недостаточной активности.

Читайте так же:
Описание цемента виды цемента

Доменный гранулированный шлак

Доменный гранулированный шлак является наиболее широко распространенным материалом в мировой практике для производства цемента, поскольку обладает уникальным сочетанием ряда свойств:

  • Скрытая гидравлическая активность
  • Пуццоланическая активность
  • Стабильность химического состава
  • Пониженное тепловыделение при гидратации
  • Положительно влияет на прочность цемента в поздний период

img-state3.jpg

Активность шлаков определяется их химическим составом, содержанием стекловидной фазы и тонкостью помола. Наиболее важное значение имеет химический состав шлаков, к которому предъявляются определенные требования по содержанию основных оксидов, в частности кальция, кремния, магния и титана. Основность шлака определяется отношением количества основных оксидов (кальция и магния) к кислым (кремния, алюминия и железа). Чем выше основность шлаков, тем выше их гидравлическая активность. Но наибольшее влияние на гидравлическую активность шлаков оказывает оксид титана, содержание которого должно быть минимальным. В таблице ниже представлены характеристики шлаков, основных российских производителей.

Активные минеральные добавки, виды и применение активных минеральных добавок.

Активными минеральными или гидравлическими добавками называют природные и искусственные материалы, которые при смешивании их в тонкоизмельченном виде с воздушной известью придают ей свойства гидравлического вяжущего вещества, а в смеси с цементом повышают его водо- и сульфатостойкость.

В большинстве случаев взаимодействие извести и активными минеральными добавками основано на том, что содержащийся в последних активный (аморфный, мелкодисперсный) кремнезем связывает известь в присутствии воды в гидросилиткат кальция, который и обуславливает ее гидравлическое твердение, т.е. нарастание прочности под водой после предварительного затвердевания на воздухе, а также способность сопротивляться выщелачивающему действию воды. Кроме кремнезема в состав активных минеральных добавок входит глинезем, который в присутствии влаги также может взаимодействовать с известью, образуя гидроалюминат кальция, обладающий гидравлическими свойствами.

При твердении из цемента выделяется гидрат окиси кальция, понижающий его сопротивляемость по отношению к выщелачиванию и воздействию некоторых солей, содержащихся в минерализованных водах. Поэтому для повышения водостойкости цемента в пресных и сульфатных водах в него вводят активные минеральные добавки.

Активные минеральные добавки бывают природные и искусственные. К первым относятся осадочные породы: диатомиты, трепелы, опоки и глиежи, также вулканические породы – пеплы, туфы, пемзы, трассы, а ко вторым – доменные гранулированные шлаки , топливные золы и шлаки, искусственно обожженные глинистые материалы и кремнеземные отходы. Все эти добавки в порошковом состоянии при затворении водой не затвердевают.

Диатомит или диатомовая земля представляет собой рыхлую горную породу, состоящую главным образом из скоплений микроскопических панцирей диатомовых водорослей (диатомей) и содержащую кремнезем преимущественно в аморфном состоянии. Трепел – также рыхлая горная порода, состоящая главным образом из мельчайших округлых зерен аморфного кремнезема. Опока — это плотная горная порода, являющаяся продуктом уплотнения диатомитов и трепелов и состоящая также из аморфного кремнезема. Наиболее активная из перечисленных добавок осадочного происхождения — трепел, а наиболее распространенная — опока. Диатомиты и трепелы способны размокать в воде. Это можно использовать при так называемой мокрой присадке этих материалов. Она заключается в том, что разболтанный в воде диатомит или трепел при изготовлении бетонной смеси добавляют в бетономешалку.

При извержении вулканов из кратера выливаются потоки жидкой расплавленной лавы, застывающие по склонам горы в виде более или менее плотной и твердой стекловидной породы (обсидиан, вулканические лавы и шлаки). Кроме того, из кратера вместе с газами и парами выбрасываются мелкие куски и пылеобразные частицы этой лавы. Они уносятся ветром иногда на значительные расстояния, охлаждаются воздухом или вулканическими дождями, сопровождающими извержение, и падают на землю, где отлагаются в виде пористых вулканических пород с различной величиной зерен. Вулканический пепел представляет собой рыхлые, частично уплотненные отложения вулканических пород. Туф — это уплотненный и сцементированный вулканический пепел, трасс — метаморфизованная разновидность вулканического туфа, пемза — камневидная порода пористого губчатого строения.

Читайте так же:
Отсев цемент пропорции для шлакоблока

Все вулканические породы, встречающиеся в природе в землисторыхлом состоянии, называют пуццоланами (по названию итальянского селения Поццуоли в Неаполитанском заливе, где они впервые стали разрабатываться). К пуццоланам относят все пористые вулканические материалы, состоящие из отдельных мелких зерен или небольших кусков (например, вулканические пески). Иногда пуццоланами обобщенно называют все виды активных минеральных добавок.

Для всех вулканических добавок характерно сравнительно высокое содержание кремнезема и глинозема. Активность активных минеральных добавок зависит от скорости охлаждения расплавленной вулканической магмы. Особенно быстро охлаждается лава, попавшая в воду в тех случаях, когда вулканы находятся вблизи морей или рек. Быстроохлажденные вулканические породы обладают большим запасом химической энергии. Такие добавки часто в значительной части или почти целиком состоят из стекла.

Вулканические добавки характеризуются высоким содержанием алюмосиликатов. При введении этих добавок в состав цементов свободная известь связывается нерасстеклованной алюмосиликатной составляющей этих добавок.

На активность этих добавок влияет также содержание в них химически связанной воды. Это подтверждается тем, что вулканический трасс после прокаливания теряет способность придавать извести гидравлические свойства.

К искусственно обожженным глинистым материалам относятся глинит, цемянка, керамзит, аглопорит, горелые породы (самовозгорающиеся в отвалах пустые шахтные породы). Обожженная глина в виде измельченного в порошок битого кирпича (цемянки) применялась еще в древней Руси в качестве гидравлической добавки в смеси с воздушной известью.

Для получения глинита глину необходимо обжечь при температуре порядка 600-800 0 С.

В некоторых местах встречается так называемый глиеж, что означает глина, естественно жженая (гли-е-ж). Глиеж осадочного происхождения, он относится к горелым породам и является продуктом природного обжига глины.

Кремнеземистые отходы (сиштоф) представляют собой богатые кремнекислотой материалы, получаемые в производстве сернокислого алюминия при извлечении глинозема из глины. Такие же отходы получаются и при производстве АIСl3 из каолинита методом хлорирования в присутствии СО. Эти отходы являются весьма активной добавкой.

Топливные шлаки и золы — побочный продукт, образующийся при сжигании некоторых видов топлива. В составе минеральной части топливных зол и шлаков обычно преобладают кислотные окислы. Содержание кремнезема, глинозема и окиси железа в кислых шлaках и золах превышает 50%.

Активность зол зависит от температурного режима сжигания топлива, а также от размера его кусков и продолжительности пребывания в зоне высоких температур. Как и глинистые материалы, наибольшей активностью обладают золы топлива, сжигаемого при температуре 600-800 0 С. При более высокой температуре сжигания топлива качество золы как активной минеральной добавки снижается.

При сжигании горючих сланцев и некоторых других видов топлива получаются основные золы, которые сами по себе являются медленно твердеющими вяжущими веществами.

Активность активных минеральных добавок, определяемая по поглощению извести из известкового раствора (в мг СаО на 1г добавки) составляет: у диатомитов, трепелов и опок – 150-400; вулканических пеплов, пемзы и туфа – 50-150; трассов – 60-150; глиежей – 30-100; обожженных глин, топливных шлаков и зол – 50-100. Добавки с меньшей активностью относятся к инертным.

Количество несгоревших частиц топлива в топливных шлаках не должно превышать 15%, а в топливных золах 20% SO 3 в топливных шлаках и золах должно быть больше 3%.

Возможно Вас заинтересует: Минеральный порошок. ГОСТ 16557—2005 «Порошок минеральный для приготовления строительных смесей», цена за 1 тн.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector